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Microwave Scattering From A
Random Medium Layer With A

Random Interface

1. IUTODRO'TIOE

In the field of wave propagation and scattering from layered media

a problem of great practical interest and importance is the one where

both medium parameters and interfaces have random fluctuations. Most

natural objects are best represented and studied by this kind of model.

Indeed the topic of wave scattering from random surfaces and that of

propagation and scattering in random media have been extensively

studied by Beckmann and Spizzichino'. and by Ishimaru2 . However. little

has been reported about the problem that involves both random media and

random boundaries. Within the framework of radiative transfer theory.

Fung and Chen3 and Fung and Eom' have solved this problem and

illustrated its usefulness by applying it to several practical

situations. Unfortunately the numerical procedure that they have used

has obscured much physical insight. Furutsu5 has also considered a

similar problem and has given a comprehensive analysis. However his

work does not seem to be readily amenable to numerical computations. We

provide in this report a first-order perturbation solution that is at

once physically transparent and computationally elementary.

(Received for publication 28 August 1992



In Section 2 the geometry of the problem is described. The problem

is then mathematically formulated in the next section. Section 4 is

devoted to the derivation of the scattered field. In the following

section the bistatic scattering coefficients are calculated. Section 6

contains a brief discussion of some of the properties of the results.

Section 7 gives the conclusions.

z =h (x, N y) Io IRegion 0

S~z-O

•, E1 ('F') Region I

z=-d

CL, 2  Region 2

Figure 1. GEOMETRY OF THE PROBLEM
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2. XOENO RY OF THE PRODLUK

Fig. 1 shows the geometry of the problem. In this two-layer

problem the bottom interface is planar while the top rough interface is

described by the random function z - h(x.y). Thus we have three

regions: Region 0. z > h(x.y), is free space with permittivity Lo;

Region 1. -d < z < h(x.y) is the layer with randomly inhomogeneous

permittivity 1(iF): Region 2. z < -d. constitutes a homogeneous medium

of permittivity E2. All three regions have the same permeability p. The

permittivity of the layer £i(F) may be written as

E 1(E) 1M +E if " (1)

where Elm E ( 7I(!) ) is the mean part and Elf(F) is the

fluctuating part. Both h(x.y) and Elf(F) have zero means and small
2

variances. The variances of h(x.y) and £1 f(r) are denoted as a and
2

S2 respectively. Further, three correlation functions are defined as

follows.

Cv(7l- F,) = (Elf(•l)E~f(.2)) (2a)

cb(y.11 Y2,,) =((~)() 2b

Cc (Fl- F2 = (rlf (Fl)h(72)) (2c)

A A
Here and henceforth xx+ yy is denoted as "

3



3. FORMULATION

For a plane wave incident on the random layer from above ( Region

0) we are interested in the far-zone scattered field in Region 0.

Mathematically we may formulate this problem as follows.

Let t (F) 1I (F) and % (CF) denote the electric fields in Region 0.

Region 1 and Region 2 respectively. These electric fields satisfy the

wave equations:

V x V x E 0 () - k0 E 0 ()- z>h (3a)

V x V x EI( ff) - k2l EI1(7) - q(Y) EI(Y) d < z < h (3b)

V x V x E 2 (?) - k2 E2(F) - 0 z < - d (3c)

where

2 2 (ak 2 = W2. C • - 0,2 (4a)

k2 - 2 (4b)

q(Y) - W2 ; £f(C ) (5)

Further, the electric fields must also satisfy the boundary

conditions

hx E0 I, h) - n x h) (6a)

4



n x V x io](Y,, h) _ n X V x (f , h) (6b)

S -f d) Z x - d)f (7a)
and

z x V x (El ,- d) - z x V x 2 ]( 1 ,- d) (7b)

A

where n is the unit vector normal to the rough interface pointing into

Region 0. The task now is to solve this system of equations. In

particular we need to find rlm.E f() . the far zone incoherent part

of the field in Region 0.

4. ANALYSIS

We first consider the situation where the boundary is unperturbed.

that is when h(F,) - 0. The electric fields in this situation are

labelled by the superscript (0). These fields satisfy the following

wave equations and the boundary conditions.

(0)o(Y) -2 (0)(,) 0 z > 0 (8a)

V x V x EI(0)(ff) - k 2 EI(0) (Y) -q(Y) E(0)(y),

-d < z < 0 (8b)

A x0(0) A -(0) (9a)
z 0 (YI,0) - z x E (rL 0)

5



z x V x J(i•,0) - z x (Vx.' (,0) (9b)

Th- solutions to Eqs.(8) and (9) may be written as

(0) (00) 0 2 (00) _(0)
Eo (Y) - Eo (Y) + f dz1  fd 2 IY G0 1 (Y,71) q(? 1 ). E1 (Y1 ) (10)

-d cc

(0) (00) 0 2 (00) _(0)
El (Y) - El (Y) + dz I fd2Yl 1 1 Gl(Y,7I) q( 1 ). E1 (Y1 ) (11)

(00) (00)
where G0 1 (YYI) and 11 (?,Y1 ) are the dyadic Green's functions: the

first subscript stands for the region where the point of observation

is located while the second subscript indicates the region enclosing

the source. Also. the arguments Y and denote respectively the

points of observation and source. The superscript (00) indicates the

situation when both the medium and the boundary are unperturbed. that

is. when h(?f) - 0 and r 1f(r) - 0.

For small av we may approximate Eq.(10) as

_(0) (00) 0 .(00) (00)
E0 (C) - ( ) + f dzl fd Yl G11E01( I) q(?I)- EI(r 1 ) (12)

- d CO

Also when ab and IVhI are small we can approximate the field

on the rough interface as

6



E0(Yh)- E0(f ,0) + h az E0 (-f,0) (13a)

E1 (f±,h) E1 (Y1 ,0) + h az E1 (Y 1 .0) (13b)

Noting that

A (14)
ii-z-Vh

we may write

A + - ] A
R x E (Y ,h) - (z x V h) Etz(f1,0) + [ + z V h • z x E,(Y,,O)

+ z h [ az x - ,O) • t - 0, 1 (15)

We now express E (f) as a perturbation series

g£(7)~ ~ -- 6 (m)

- 6 Et(Y) (16)

Mn 0

where 5 is the small parameter of the problem. From Eqs.(16) and (15)

we have

7



_a A A _(01
.E(t1 1 h) z[ + I h ] z x E. (0 .0)

A _(1) A (0)
+ 6 z x E.( (YO) + (z x V h) E tz(Y.0)

A _(0)
+ z h [ x z x (( 1 ,o) z = - 0, 1 (17)

On substituting Eq.(17) in Eq.(6a) we obtain the following relations.

Zeroth-order relation;

A Ao(O) - A -(0) (18)
z x E0) _ z x (f (18)

first-order relation;

A x I A -( +(9z x (Y± , - z x E,0) + (y) (19)

where

A(•A + x(0) j(0)
(Y L(z x h) z+ h z zxI T [E 1  -E 0  ](?fivO) (20)

8



Also from Eqs.(13) and (14)

R x V x E](,h) m (z x Vh) z • V x E (i,0)

+ y + z Vh [ z x V x ](fO)

+ [z h az x V x ](C,O) (21)

On substituting Eq.(16) into Eq.(21) we have

ii v [ (i 1 ,h) x Vh) I • z V x E (Y,0)

S + z Vh (0)

+ A [v x ~() ] (?•iO
+ 6 z x IV x EYL0)

+ [ A (0) ( ,0) (22)

Equations (22) and (6b) yield the following relations.

Zeroth-order relation:

A A (0)]
z x0[)V x E (,f.0) - z x [V x Ei (', 0) (23)

first-order relation:

Z x V x (0 i,0) - z x X x ' (i' 1 ,0) + " (24)

9



where

S(•-f (z xVh)(z.V xY) + h z ax V X T][ -o 1 (7,o)

(25)

The zeroth-order relations of Eqs.(18) and (25) are indeed a replica

of Eq.(9). Moreover we do have an explicit zeroth-order solution by

means of Eq.(12). So our task now is to find the first-order solution.

In this context we note that the first-order electric fields. E1)(Y)
'0

and E1(Y) satisfy the wave equations

V X V X (1)(Y) k02 E0(1)(Y) - 0 , z > 0 (26a)

V X V x E (1)(Y) - k2  E (1) (Y) - 0 d<z<h (26b)
1 im 1

The above equations, in conjunction with Eqs. (19) and (24), lead to the
following solution for -l)(Y).

i•>(Y 2•- Y,'• f <°> Y < i•;.y•;)o + [ V'X 'o<°< A -31. <(Y!)
0 cc (0) ()0)

(27)

Thus our first-order solution in Region 0 is expressed as

_(o) _(1)
EO(7) - E0(Y) + E0 (Y) (28)

10



_(o) _(1)
where E0 (7) and E0 (7) are given by Eqs.(11) and (27). The scattered

field

- ~ (00)
E E0(?) - EM 0 () is then

0s 0 (0) _(00)
EO(ff- f dz 1  fd r1 L G0 1 (7,7 1 ) q(rl)1 E1 (E 1 )

-d - C

f2,' f ) + (0) a

(29)

but we know that (see Eq.(12))

(o) .(00) o (00) (00)
G01 (Y,') - G01(Y,7') + f dzI fd2 1 l GLa01(, 1 ) q(il)1 1 1 ( 1 ,?')

-d

(30)

Further. we are interested in the far-zone solution for the scattered

field E0s(Y) - lim E0 s(Y). Therefore we need to use the asymptotic
r -+ G

form of the dyadic Green's function 3(004 .) - un (00l_
01 1 r 01

Noting these comments we obtain from Eqs.(29). (30). (20). (25). (10)

and (11) the following first-order solution for R0s(,).

1i



R- 0 - 2  (00) _(00)Off•) -f dz' f d2 Ya01 (7,Y') q(f'). E i(YI)

-d -Q

2-fd2  f (00) +FVx(00)

40 1 01 L)r± 0L f ??~]

(31)

where

i [ A A -(00) _(00)
Y (y) (z x Vih) z + h z az x E - j( o) (32)

J(? ) - (zx Vh)(z.V X I)+hzaX V X1M E - E0 1(?,o) (33)

_(00) _(00)
Explicit expressions for d01(YY)and E1 (Of1) are given in

Appendixes A and B.

5. SCATTERING COEIFICIERTS

Suppose a plane wave E.(7). given as

Ei(Y) - a0 Elexp [i [ f ] (34)

is incident on the random medium layer. The bistatic scattering

coefficients 7•( can then be readily calculated using the following

definition (Peake. 1959]6

12



4*r 2 (ltos (r) 2)(35

- a cos 801 IEi ()

where the subscripts a and 0 stand for the polarization of the incident

wave and scattered wave respectively: a denotes the illuminated area;

90i is the angle of incidence. On using Eq. (31) in Eq. (35) ya may be

evaluated. Omitting the rather tedious intermediate steps the final

result is presented in the following compact form.

- [r +rv(b) F(c) ] ' (36),Yf 1 rxcSo f + rai + rf f 0 ,0 1 f h,v 1 (36)

where

r(v) 2_
r " *•" (37)

j-i

6 IAiAap s2 { exp 2(k" +k" )d 1

2(km +kmz) lmzsklmzi f
lmzs lmZi

• + ^ 2 - - , I

2 (k- k imzs- klmz ) (38a)

2Ikjmzi- kjmzs I expt 2(- k"mzs+k"mzi)d J - 1

Alik mzs+kmz) (38b)

13



A- 3 ap j- I exP I 2(ki.zs- klzi) d
S21kigz8- kimzil

£4i) k lB38c)2

"a(k i:! exp[ 2(kjmzs+kimzi)d] -1

PIS a ( i s' ) dC k±,kmzs+kimzi)(3d

5 6 2dtJA aiB 2 * (2k .1,0 )(38e)

r -b 2 A2 0 b(ki - )

I A~ Is e

z US x T [P z QZ (Lk~ Is (P

)I2
A a~r a +( N. .

+ z V L (Mz- Nz (k,,- k~s +(

(39)

14



and

BA, -A,. A+)2 o( , •.s.- Jk'm.s+ k,,1 i)

r(C) - 2wp Re f
A- A'

+A Bi 5 C•s" ) •c(k. -i k , k k .ci S i S. lmzs lmzi j

+A A... 1iAs(i*L, kms jz

US x T [P Q z(Li-s i s )+ (P )J

+ z v x L z (M z N (k I- (

k z k (40)

where

-P A+
U Aps p s + B Ps ;Pp h,v (41)

-h A+ A-
Vs -- Ahs Vis -BPs V1  (42a)

A h +B hA+ (42b)

-h r A+ A_ 1

p - B hi vi n+11h / (43a)

-h + A A
Rhi vo+ + Vi ] / 0  (43b)

15



Ch A+ Ahi A- (44a)
- iklmzi B-hi Vli- Al v /11

SA+ A - (44b)

P - P h Replacements l V h45]

Q ._ Q Replacements f h V (45b)

IV - h Replacements f h v (46a)

IV - f * Replacemnents f h v (46b)

A+ A- (47a)
RP - pi Pli + Pli plh

5 - R A+ A- p -hv 
(47b)N Rpi Poi + Poi ;p"hv

A+ A_ (48a)
RIP iklmzil BPi Pl - A p Pll p - h,v

NP ik~ziRhi Poi -P 0 i ; p h,V (48b)

16



ROP + R exp[ 12kzd1

Rp - 0 (49)
1 + R RP exp 12k 1d]

01 12 ex[ Imk1

- [ (50a)

"- [ ./i ] .5(~b
- fi (51b)

I if k Is k - k i (51)

l 0 otherwise

S1 if a -(52)

0,8 0 otherwise

The other quantities are defined in Appendix A. We have denoted the

spectral densities of the correlation functions Ct . t - v.b.c by bt"

The superscripts ' and " over the various propagation constants

indicate their real and imaginary parts respectively. The subscript i

indicates that the angle associated with that quantity is the angle of

incidence. Similarly the subscript s corresponds to the angle of

A A

scattering. h and v1  are the unit polarization vectors of the field

in Region I (unperturbed situation) and they stand for horizontal and

vertical polarizations respectively. These vectors are defined in

Appendix A.

17



6. DISCUSSION

The representation in which I have presented the scattering

coefficients is very suitable for physical interpretation. There are

three terms r(v) r(b) and r(c) which constitute the scattering
ap'up ap

coefficient 7uL. They represent volume scattering, boundary scattering

and cross scattering (between volume and boundary inhomogeneities).

The five terms that make up r(v) are schematically described in Fig.2

by corresponding scattering diagrams. We have represented the wave

path by a solid line and corresponding complex conjugate by a dotted

line.

Although it is just a particular case of our general result.

backscattering deserves special attention because of its importance

in several practical applications. To obtain expressions for

backscattering coefficients CFO we let k.s = -ki in Eqs.(36)-(40).

This result is:

o 1 r (v)+ a(b)+ I(c) f ' f , (0,5 "~ L f 00+0,50, j; , - hv (53)

where

3
a(v) A 6 (53)

005 -1

18
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4t3 44

45

Figure 2 VOLUME SCATTERING
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-b exp 4kj.d f - 1 (2- 2kjmzi) (55a)
•I"-4k"i

Imz i

2 (55b).2 - 4 IAiBf.ii d •v(2•1,0u)

- IB aiBoil 2 f rx 4km~ 0 12 ,2iz (55c)

3 4k" 14 1 1kmi j 1j*(2~i2i~
lmzi

(b) 2 2 4b(2k i)

A [2 (P a )k i+i(I )

2
A x * •2 (N ) k + i (MH

+ z • x • 2(z- Nz A l •a ,

(56)

a(c) -2wp 6 Re A B x 0c(2k 0)

+f Al AB t 2i 2k

1
SA piAi X2 c JA-2kjmzi)

f^ A x 2 (P a ki+ i (+ i -Q)

A 2P (M a N a )0 k")
+ z • V 12 (MzNz ) k 1 +i (_ J- ,)

(57)

20



and where

f - I if a-h (58a)
- cos 201i if a - v

f - 1 if a-h (58b)
X2  + i if a - v

The most striking feature of the above result is the disappearance

of depolarization in the case of backscattering. This is not too

surprising when we consider the fact that our result is a first-order

perturbation solution to a scattering problem which has isotropic

characteristics. The other feature is that of enhancement. As shown in

Fig. 2 there are certain scattering processes that constructively

interfere and hence contribute only in the backscattering direction.

Next we try to relate our results to those of others. We

mentioned earlier that r(v) is the contribution due to volume
af3

scattering. Indeed it is easy to verify that our (41 cOo)-1 r(v) is

equivalent to that of Zuniga and Kong [1980)' . However. physical

processes are more clearly identifiable in ours. We next consider the

boundary scattering term. r(b) Barrick and Peake [1967]'. have used

the Rayleigh-Rice method to calculate the bistatic scattering

coefficients of a slightly rough surface. To compare our results with

theirs we need to let d - • in (41 cose0i)- r(b) On doing this and

after some algebraic simplifications we notice that our results are in

agreement with theirs.

21



It is pleasing to observe the structure of the results for 100 and

0o. Indeed several conclusions may be drawn on closer examination of

those expressions. Such a task will be undertaken in a future report

which will also present numerical examples.

We have thus solved the problem of scattering from a random medium

layer with a random interface using a first-order approximation. Our

solution is therefore a single scattering solution. Quite obviously our

result is meaningful only when the random inhomogeneities are small. If

not. the phenomenon of multiple scattering will play a dominant role

and it must be properly taken into consideration. We notice that in our

first-order perturbation method the various scattering contributions.

namely. volume, boundary. and volume-boundary, are merely additive.

This is certainly not so in multiple scattering where various

interactions take place and the physical picture is fairly complex

[Mudaliar and Lee. 1991]'. Thus there are limitations to the situations

where these results can be applied. Nevertheless this work has given a

frame-work to analyze the more general case of multiple scattering.

7. CONCLUSION

We have considered the problem of microwave scattering from a

random medium layer with a random interface. Assuming that the random

fluctuations are small, a simple perturbation solution for the

scattered field is obtained. Using this. the bistatic scattering

coefficients are calculated and expressed in a compact meaningful

form. With the help of schematic scattering diagrams the various terms

22



that constitute the scattering coefficients are explained. The special

case of backscattering is considered in some detail. Since this result

is essentially a single scattering approximation. one natural extension

of this work will be to study the case of multiple scattering. This is

left for future work.
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Appendix A

Asymptotic Dyadic Green's Function

(ik 0 r erik , (o 0 0 r , y .) -- -i , r g( k l m z ) ( A l)

where

_ ) -Iklz' + h1

jiI'z h 0 h, Ab e 1= + h 0 h_ Bh k:'m

-\+ A+ Z' A+A_ A k-z+ v0 , Av e l + v 0 vI Bv (A2)

XP

X01

A p- D 0 p -h,v (A3)
P

P 12k md
B - A R12 e 1;2 p h,v (A4)

P P 1 2 eipkhm

D - 1 + R0 1 Re 12 ; p - h,v (A5)

h kiz - k jz X fR ij - iz+kjz X i,j f- o 0,1,2 f (A6a)

27



Rl Vliz l k iz ,- 0,1,2 (A6b)

i 2k iz + x i, k j •

XR " k + ik z " I " f 0,1,2 1 (AU)

vj kj 2+kjz ,

xh ki 2ckz z "j 0.1,2 (A7b)

i _ k- c ik -z + • •-I k, j z

A+ A- 1 A A
h- hit = k A yk) ;t1, 23 W)

y x

A+ A+ A
V L-hz xkt ;k - 1, 2, 3 (A9a)

A- A- AV h hL x 1C 1 , 2, 3 (Agb)

X + y +--k z (AlOa)

r, xkx + y'ky -z~kz (AlOb)

2 2 2 .

2 2ct (A12)

In the above k stands for klm. This convention is adopted here for

notational conciseness.
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Appendix B

Unperturbed Electric Fields In Region 1

TE case

(A) A+ ik 1 r A- ri
"EI°(r -oi E 1 h if e 4Ahieh ii ' (31)

TM case

(oc) A+' ik 1 r A-. tic 1 o*r
E 1°(r) - Eo01  Bi vii + A1 V 11  J e i e i (B2)

All quantities in the above equations are defined in Appendix A.
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Nomenclature

h zero-mean random function describing surface height

Ej permittivity of the medium in Region j

Elm : mean part of E1

Elf fluctuating part of El

Ct. :correlation function; t - {v.b.c}

at 2 :variance associated with t - tv.b.cl

Ot :spectral density

r, :projection of F on the xy plane

E : electric field in Region j

iJ(O) electric field in Region j when the boundary is unperturbed

RJ (o): electric field in Region j when both

boundary and medium are unperturbed

G 01 dyadic Green's function for source in Region 1

and observation point in Region 0
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=(o) =(oo)
-(01 °0 :dyadic Green's functions; superscript conventions

same as in E

Es : incoherent scattered field in Region 0
0

V0 : incident field in Region 0
0

00i angle of incidence

yap :bistatic scattering coefficient;

a -polarization of the incident field
P -polarization of the scattered field

y 0 back scattering coefficient

k : propagation vector in Region j

kim : mean part of k

kimz : z-component of the klm

klmzs: klmz evaluated in the scattered (observation) direction

kimzi: kimz evaluated in the direction of the incident wave

A

h0 : unit vector for horizontal polarization in Region 0

A

v 0  :unit vector for vertical polarization in Region 1

A+

a÷ : unit polarization vector (a = h or v) for upward travelling wave

A
a unit polarization vector for downward travelling wave
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